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Abstract: (1) Background: Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative
disorder. Hydrogen gas (H2) is a therapeutic medical gas with multiple functions such as anti-
oxidant, anti-inflammation, anti-cell death, and the stimulation of energy metabolism. To develop a
disease-modifying treatment for AD through multifactorial mechanisms, an open label pilot study
on H2 treatment was conducted. (2) Methods: Eight patients with AD inhaled 3% H2 gas for one
hour twice daily for 6 months and then followed for 1 year without inhaling H2 gas. The patients
were clinically assessed using the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-
cog). To objectively assess the neuron integrity, diffusion tensor imaging (DTI) with advanced
magnetic resonance imaging (MRI) was applied to neuron bundles passing through the hippocampus.
(3) Results: The mean individual ADAS-cog change showed significant improvement after 6 months
of H2 treatment (−4.1) vs. untreated patients (+2.6). As assessed by DTI, H2 treatment significantly
improved the integrity of neurons passing through the hippocampus vs. the initial stage. The
improvement by ADAS-cog and DTI assessments were maintained during the follow-up after
6 months (significantly) or 1 year (non-significantly). (4) Conclusions: This study suggests that H2

treatment not only relieves temporary symptoms, but also has disease-modifying effects, despite
its limitations.

Keywords: ADAS-cog; Alzheimer’s disease; diffusion tensor imaging; neuronal integrity; hydrogen
gas; disease-modifying treatment; multiple functions

1. Introduction

Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative disorder that
causes impairments in cognition, memory, and behavior. Most AD drug developments
to date have focused on targeting a single mechanism according to the conventional
strategy [1]. Currently approved drugs for AD treatment including cholinesterase inhibitors
(donepezil, rivastigmine, and galantamine) and an N-methyl-D-aspartic acid receptor
antagonist (memantine) are symptomatic, but poorly improve the progression of the
disease [2]. On the other hand, aging is the highest risk factor for AD, suggesting that
multiple factors are involved in the etiology of AD in a complex manner [3]. In recent years,
multifactorial mechanisms and multi-target strategies have been considered to develop
disease-modifying drugs [4,5]. However, suitable combinations of two or three medicines
may be difficult because of the difficulty in exploring even one effective medicine. Thus, it
is necessary to explore the utility of a multiple function molecule as a disease modifier.

The direct cause of AD is neuronal death, and it is impossible to revive dead cells by
any treatments. However, in addition to being temporarily activated, it may be possible
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that surviving neurons could be improved in the integrity of neurons after AD onset on
receiving a disease-modifying treatment [6]. A more ideal strategy would be to restore
the integrity of surviving neurons with disease-modifying therapies, even after the onset
of AD.

Molecular hydrogen (H2) is an inert molecule in the absence of a catalyst. It has
long been believed that H2 has no biological function in mammalian cells. H2 first re-
ported in 2007 as a therapeutic antioxidant by one of the present authors [7]. Subsequent
extensive studies on model animals revealed that H2 exerts multiple functions such as
anti-inflammatory, anti-cell death, and the stimulation of energy metabolism to exhibit
efficacies against a variety of disease models [8,9]. H2 has the ability to cross the blood-
brain barrier (BBB) by gaseous diffusion without a specific drug delivery system [7]. A
number of animal experiments suggest the potential of H2 to improve neurodegenerative
disorders [10]. Moreover, numerous small-scale clinical studies have indicated that H2
therapy provides the marked beneficial effects in a wide range of diseases. It is noteworthy
that no adverse effects have been reported in human studies related to the administration
of H2 therapy [11]. In fact, the inhalation of H2 gas has been approved as safe by a Phase I
clinical trial [12].

Several reports have shown marked efficacies of H2 in dementia model animals [13].
In addition, clinical studies suggest that H2 is applicable for dementia. We showed that
long-term drinking of H2-dissolved water (H2 water) improved the cognition of subjects
with mild cognitive impairment (MCI) who carry the apoE4 genotype [14], who have a high
risk of AD [15]. Moreover, we recently published a case report on advanced AD involving
a patient who showed improved fecal incontinence by the continuous 2-year inhalation of
H2 gas [16]. Thus, H2 has a strong potential as a multi-functional agent for improving AD.

In the present study, we aimed to identify a treatment that activates neurons after
the onset of AD as a disease-modifier. As an objective assessment of neuronal integrity,
the diffusion tensor imaging (DTI) method [17–19], with an advanced magnetic resonance
imaging (MRI) technique, was applied in addition to a clinical evaluation [20]. Here, we
suggest that the inhalation of H2 gas exhibits a therapeutic effect. In addition, follow-up
over the subsequent one year without inhaling H2 gas suggests that this treatment not only
relieves temporary symptoms, but also provides a disease-modifying effect.

2. Results
2.1. Hydrogen Treatment Improved AD as Assessed by ADAS-cog

Eight patients and their family members agreed to participate in this open label study.
Table 1 shows the background of the participants and controls (Table 1).

Table 1. Background of the patients with AD.

H2-Treated Group Control for DTI Control for ADAS-cog

Number of patients 8 5 19
Age (±SD) 79.4 ±6.11 80.4 ±1.8 - -
Creatine (mg/dL) (±SD) 0.675 ±0.104 0.66 ±0.114 - -
Female (%) 87.5 80 - -
Diabetes (%) 12.5 20 - -
Lipidemia (%) 25 60 - -

Mean of ADAS-cog (±SD) 29.74 ±8.03 27.6 ±6.5 27.83 ±3.53

SD: standard deviation. -: data not available.

Since the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) is
widely accepted as one of the most trustworthy methods, we used ADAS-cog as a clinical
assessment [20]. In ADAS-cog, a lower value means improvement and a higher value
means worse. The initial stage of the ADAS-cog of the participants ranged from 19 to 40.
The patients continued to inhale 3% H2 gas, for 1 h, twice per day, for 6 months. Throughout
the study, no adverse effect was noted.



Pharmaceuticals 2023, 16, 434 3 of 13

ADAS-cog changes from each initial stage were obtained at 3 and 6 months, and the
follow-up periods for an additional 6 and 12 months. The patients did not inhale H2 gas
during the follow-up period. Figure 1 shows the time-dependent profile of the mean of
each change in ADAS-cog.
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Figure 1. Change of ADAS-cog from the initial stage. Participants inhaled 3% H2 gas for 1 h, twice per
day, for 6 months and were followed-up for 1 year without H2 inhalation. ADAS-cog was examined
at the first 3 months (only H2 group), and every 6 months in the participants and untreated control
patients, and the changes from the initial stage were averaged with standard deviations (error bars).
Blue circles and red squares show the H2 group and untreated controls, respectively. * and ** indicate
significances with p = 0.017 and 0.004, respectively (H2 group vs. untreated control group). Note that
ADAS-cog was obtained independently in the physical therapy department, the staff of which did
not know whether subjects were participants in this study or common outpatients. These results
were reported to doctors via an electronic chart system in a blinded manner.

ADAS-cog control data were obtained from the Nishijima Hospital database in which
patients with AD were followed approximately every 6 months for more than 1.5 years.
The mean value of the initial ADAS-cog in the control untreated group was 27.8 with
±3.53 standard deviations, which was similar to that of the H2-treated group, and the
profile of the untreated group on each change in ADAS-cog was in good agreement with
previous publications [21,22].

The mean value of ADAS-cog change in the H2-treated group tended to increase
(worsened) after the first 3 months (Figure 1). The long-term usage of a facial mask may
cause the stress during the inhalation of H2 gas. After the next 3 months, the ADAS-cog
change in H2 group was markedly decreased (improved) compared with the initial stage,
while the untreated controls were continuously worsened. The improvement after the
next 3 months (totally 6 months) was significantly greater than in the untreated control
(Figure 1).

Moreover, the improvement became noticeable in the follow-up after 6 months
even without inhaling H2 gas, in which this improvement was significant vs. the un-
treated group (Figure 1). In further follow-up for 6 additional months, the trend of
improvement continued.
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2.2. Improvement of Neurons by H2 Inhalation as Assessed by Diffusion Tensor Imaging

The neuron bundles of cerebral white matter are highly directional. The water diffusiv-
ity is much higher along the direction of the alive bundle compared with other directions.
The difference between diffusivity along and across bundles increases depending upon
neuronal integrity and axonal density. Neuron bundles that passed through the entire hip-
pocampus at five seed positions were visualized by three-dimensional diagrams, and a two-
dimensional image containing the hippocampus was arranged into one image (Figure 2).
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Figure 2. Application of diffusion tensor imaging (DTI) to the neuron bundles that passed through the
entire hippocampus. For the selection of neuron bundles that pass through the entire hippocampus,
five seed points were set, as shown by blue gates. Yellow neuron bundles that pass through the
hippocampus were visualized by the DTI method, as described in Materials and Methods. Three-
dimensional images of neuronal bundles in the brain passing through the hippocampus were taken,
and two-dimensional images containing the hippocampus were arranged into one image.

Fractional anisotropy (FA) values reflect the density of active axons within bundles,
with lower values corresponding to lower active axonal density. To evaluate the diffusivity
of water along the neuron bundles as neuron integrity, diffusion tensor imaging (DTI) was
conducted with different FA values at 0.1 and 0.2 for the entire hippocampal region [17–19].
The neuron tract size visualized at FA = 0.2 reflects the higher neuronal integrity, while
the visualized neuron tract reflects the entire neurons at FA = 0.1, which is less sensitive to
neuronal integrity. Figure 2 visualized the neuron bundles that passed through the entire
hippocampus at five seed positions (Figure 2).

Figure 3 shows the representative DTI pictures of two patients observed with lateral
and axial views, at the initial stage, 6 months post-treatment, and follow-up for the subse-
quent 6 and 12 months. The visualized bundles at FA = 0.2 were increased after 6 months of
treatment, and maintained during the follow-up. It is notable that the visualized bundles
changed not only in size, but also in shape, suggesting that the H2 treatment improved the
integrity of the additional area, as shown by the arrowheads in Figure 3.
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Values for each measurement variation should be normalized for more accurate quan-
titative analysis. The value of FA = 0.1 is less sensitive for neuron integrity. Thus, the value
of FA = 0.2 was divided by the value of FA = 0.1, which was obtained at the same time, and
corrected for variation between measurements for normalization. Therefore, the number
of pixels in the corresponding neuron bundle tracts at FA = 0.2 was normalized by the
number of pixels at FA = 0.1, and the mean value was obtained by averaging the 4 images
from each patient from the right and left hemispheres from the lateral and axial views.
Five AD patients who consented to the use of their DTI data for this study were recruited.
The ADAS-cog mean and standard deviation values (27.6 ± 6.5) were similar to the H2
group (Table 1).
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Figure 3. Representative diffusion tensor imaging (DTI) in two patients. The patients inhaled H2 gas
for 6 months and were followed-up for 12 months without inhalation of H2 gas. Since DTI changes
vary from patient to patient, images of two patients are shown as examples. DTI was visualized
at FA = 0.1 and FA = 0.2 with lateral and axial views. (A): initial stage, (B): after H2 inhalation
for 6 months, (C): follow-up after the subsequent 6 months, and (D): follow-up after 12 months.
Arrowheads indicate the area that was changed in shape.

Figure 4 shows the time course of the means with the standard errors. The mean value
of the neuron tracts significantly increased with 6-month H2 inhalation vs. the control
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(*** p = 0.001) and vs. the initial stage (## p = 0.0036). After the 6-month follow-up, the
improvement was significantly maintained vs. the initial stage (# p = 0.011). In addition,
the mean value after 12-month follow-up was higher than the initial value, despite there
being no significance.
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Figure 4. Quantitative analyses of the time course of the diffusion tensor imaging (DTI). Participants
inhaled H2 gas for 6 months and were followed-up for 12 months without inhalation of H2 gas.
DTI was examined at the indicated times for participants and untreated control patients. The pixel
numbers of the corresponding neuronal bundle tracts in FA = 0.1 and FA = 0.2 were obtained for
the right and left hemispheres with lateral and axial views. Each value in FA = 0.2 was divided by
that in FA = 0.1, and these normalized values from patients with 4 images were averaged with the
standard errors (error bars). Blue circles and red squares show the H2 group and untreated controls,
respectively. *** indicates significance with p = 0.001 vs. untreated group. ## and # in the H2 group
indicate significances with p = 0.0036, and p = 0.011, respectively, vs. the initial stage of the H2
group. # in the untreated control group indicates significance with p = 0.024 vs. the initial stage of the
control group.

Taken together, the inhalation of H2 gas for 6 months improved AD, as assessed
by clinical ADAS-cog and objective DTI. Moreover, at least after 6 months without H2
treatment, the improvement was maintained, suggesting that this treatment provides not
only temporary relief, but also a disease-modifying effect.

3. Discussion

It is widely accepted that the accumulation of amyloid β protein induces neuronal
death in AD [23]. Alternatively, oxidative stress plays important roles in AD and is
considered as one of the central factors in the pathogenesis of AD [24]. Since oxidative
stress affects the expression of numerous genes that regulate many pathological phenomena
such as increased production of amyloid, modification of the tau protein, autophagy,
and apoptosis, the antioxidant effect of H2 may be its most important neuroprotective
property [11].
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The pathogenesis of AD involves strong interactions with immunological mechanisms
in the brain [25]. Inflammation apparently occurs in pathologically vulnerable regions of
the AD brain [26].

Additionally, the down-regulation of energy metabolism has been implicated as one of
the risks and/or causes of AD. Deficits in glucose availability and mitochondrial function
are well-known hallmarks of brain aging and are particularly emphasized in neurodegen-
erative disorders such as AD [27], implicating that energy metabolism is involved in their
progression. In fact, moderate exercise has been suggested to help delay the progression of
AD [28].

Therefore, one strategy for AD therapy or drug development is to modulate oxidative
stress, inflammation, and energy metabolism [29].

Recently, a number of randomized clinical studies with inhalation of H2 gas have been
conducted in a variety of diseases. For example, H2 inhalation improved physical and
respiratory function in acute post-COVID-19 patients [30]; a breathlessness, cough, and
sputum scale score in patient with acute exacerbation of chronic obstructive pulmonary
disease [31]; functional state of red blood cells, which is accompanied by a more favorable
course of the early postoperative period [32]; and improved systemic inflammation and
liver histology in patients with moderate-severe non-alcoholic fatty liver disease [33].

As the molecular mechanism by which H2 exerts multiple functions, a target molecule
of H2 was recently identified [34]. An oxidized form of porphyrin catalyzes the reaction
of H2 with hydroxyl radicals, the most oxidative free radicals, to reduce the oxidative
stress. Additionally, as a secondary anti-oxidative function, H2 activates NF-E2-related
factor 2 (Nrf2) [9], which reduces oxidative stress through the expression of a variety of
anti-oxidant enzymes [35].

Furthermore, H2 has an anti-cell-death function by inhibiting ferroptosis through a
decrease in peroxide [36], and by down- and up-regulating pro- and anti-death factors,
respectively [37].

H2 relieves inflammation by decreasing pro-inflammatory cytokines [38]. H2 modi-
fies the phospholipid mediator that inhibits Ca2+-signaling, resulting in suppressing the
nuclear factor of activated T cell (NFAT) transcription pathway to down-regulate pro-
inflammatory cytokines [8,36]. NFAT signaling plays an important role in driving amyloid
β-mediated neurodegeneration and affects AD [39]. Moreover, the NFAT transcriptional
pathway is involved in amyloid β synaptotoxicity [40]. Therefore, the suppression of NFAT
transcriptional regulation could explain the beneficial effects of H2 for AD improvement.

H2 inhibits the free radical chain reaction, resulting in a decrease in fatty acid per-
oxidation and its end-products such as 4-hydroxyl-nonenal (4-HNE), which is known to
serve as a transmitter of various types of cellular signaling. In turn, the decrease in 4-HNE
promotes the expression of PGC-1α, followed by increasing FGF21, a key regulator of
energy metabolism, and several enzymes related to β-oxidation [41,42].

The delivery of drugs to the brain that can cross the BBB is one of the serious issues in
developing therapeutic agents for AD. H2 is non-polar, non-ionic, and small, allowing it to
pass the BBB and easily reach neurons by rapid diffusion [7].

Taken together, given the multiple risks and/or causes for the etiology of AD, H2 with
these multiple functions is considered to show marked potential to improve AD.

In the present study, we showed that H2 treatment led to marked improvement
when the effects were compared with those of donepezil: donepezil administration de-
creased (a lower value means improvement) the ADAS-cog by −2.9 or −3.1 points after
24 weeks [43,44]; however, after 6 months, the scores returned to the initial level despite its
continuous administration [21]. On the other hand, in the present study, the mean value of
ADAS-cog change was −4.1 points from the initial stage after the 6-month treatment of H2.
This change by H2 may be marked in comparison with approved agents such as donepezil.

In this follow-up study, the mean of ADAS-cog in the H2-treated group remained
significantly better than in the untreated control group after 6 months, and the effect tended
to persist for 1 year. Moreover, this follow-up in DTI also indicated that the neuronal
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integrity after 6 months of treatment was significantly higher than at the initial stage.
Additionally, the DTI improvement effect tended to persist for one year. These results
suggest that 6 months of H2 inhalation maintained the disease-modifying effects for at least
6 months.

Finally, we note the limitations of this study. This study involved a small number of
patients enrolled in a non-randomized manner. Further studies require a placebo-controlled,
double-blind trial to clarify the effect in a large number of patients. Despite these limitations,
this study suggests that H2 gas inhalation has the potential to provide not only temporary
relief, but also disease-modifying effects.

4. Materials and Methods
4.1. Approval for This Study

This study was carried out in accordance with “The Code of Ethics of the World
Medical Association (Declaration of Helsinki)”. The protocol of this clinical study was
approved by the Nishijima Hospital Ethics Committee, and was pre-registered at URL:
http://www.jmacct.med.or.jp. Clinical Trial Registration-JMACCT ID: JMA-IIA00308. We
received written informed consent from a family member for all patients.

4.2. Patient Selection

The criteria for the inclusion of AD patients were as follows: (1) diagnosis of AD in
accordance with the recommendations by the National Institute on Aging-Alzheimer’s
Association Group (NIA/AA) [45]; (2) an ADAS-cog score of more than 10 or less than 50 or
a corresponding score converted from mini-mental state examination (MMSE) using the
formula 70-(MMSE x 2.33) [46]; (3) treatment with at least one of anti-cholinesterase drugs
and/or an NMDA receptor antagonist had already been attempted, and yet the ADAS
scores were worsening; (4) routine treatment in Neurology Dementia Clinic with multiple
ADAS-cog/MMSE tests every 6 months with recent worsening; (5) no significant airway
disease such as chronic obstructive pulmonary disease (COPD), pneumonia, bronchitis,
or asthma that might interfere with adequate inhalation of H2; and (6) having experience
of brain MRI. The patients continued to receive at least one of the following medicines:
donepezil, galantamine, rivastigmine, or memantine.

The patients who satisfied these inclusion criteria were offered 1 week of test inhalation
and test medication. The patients were confirmed to show no symptoms at a blood level of
less than 0.8 mEq/dL, and no kidney or liver dysfunction, and the patients’ families/care
givers managed the H2 generator including checking the water level of the generator, and
let the patients inhale H2 gas for 1 h.

4.3. Collection of Data from Untreated Control Patients

As the untreated controls for ADAS-cog assessment, 19 patients with AD out of
94 patients in the Nishijima Hospital database satisfied the following criteria: the initial
ADS-cog was in the range from 19 to 40, and the data of the ADAS-cog were followed every
6 months for more than 1.5 years at Nishijima Hospital. Mean and standard deviation
values of ADS-cog of the 19 patients were 27.8 ± 3.5 in the initial ADAS-cog, which is
similar with that of H2 group (Table 1).

As the untreated control for DTI, 5 patients agreed to the use of their DTI data for this
study. Mean ADAS-cog and standard deviation values were 27.6 ± 6.5, which is similar
with that of H2 group (Table 1).

4.4. Treatment

The patients inhaled 3% H2 for 1 h twice daily through a regular facial mask in their
own home or in a nursing home. The family members always watched the patients to
ensure continuous inhalation for 1 h using the facial mask. H2 gas (3%) with 21% oxygen
was generated using a portable H2 generator (Nishijima/Enoa hydrogen gas generator)

http://www.jmacct.med.or.jp
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as described previously [47]. The H2 generator was checked for adequate gas production
every month.

4.5. ADAS-cog Examination

Since the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) is
widely accepted as one of the most trustworthy methods, we used ADAS-cog as a clinical
assessment [20]. In ADAS-cog, a lower value means improvement and a higher value
means worse. The ADAS-Cog consist of 11 questions: Word Recall Task, Naming Objects
and Fingers, Following Commands, Constructional Praxis, Ideational Praxis, Orientation,
Word Recognition Task, Remembering Test Directions, Spoken Language, Comprehension,
and Word-Finding Difficulty.

Clinical effectiveness was assessed by monitoring ADAS-cog [20]. ADAS-cog was
obtained independently in the physical therapy department, the staff of which did not
know whether the subjects were participants in this study or common outpatients. These
results were reported to doctors via an electronic chart system in a blinded manner.

4.6. Measurement of the Integrity of Neurons by Diffusion Tensor Imaging

The neuron bundles of cerebral white matter are highly directional. The water diffusiv-
ity is much higher along the direction of the alive bundle compared with other directions.
The difference between diffusivity along and across bundles increases depending upon
neuronal integrity and axonal density. Fractional anisotropy (FA) values reflect the density
of active axons within bundles, with lower values corresponding to lower active axonal
density. To evaluate the diffusivity of water along the neuron bundles as neuron integrity,
diffusion tensor imaging (DTI) was conducted with different FA values at 0.1 and 0.2 for
the entire hippocampal region [17–19].

Brain MRI was examined in the radiology department as an objective assessment.
Five seed points were set at the volumetric measurement sites where the neuronal bundles
passed through the entire hippocampus (Figure 2). Digital tractography imaging was
performed using Neuro3D with the GRAPPA technique. DTI was obtained with FA values
of 0.1 and 0.2. The tract size was calculated from the pixel number of the tract images, and
the number of pixels in the tract was calculated using ImageJ software.

The staff in these departments reported the results to doctors via an electronic chart
system in a blinded manner. They had no information on whether subjects were participants
in the study or common outpatients.

4.7. Statistical Analysis

Statistical analysis was performed by an academic biostatistician using SAS software
version 9.2 (SAS Institute Inc., Cary, NC, USA) by the Student’s t-test with two tails. p < 0.05
is considered as significant.

5. Conclusions

This study suggests that H2 inhalation resulted in marked improvements as assessed
by ADAS-cog and DTI, and importantly, provided not only temporary relief, but also
maintained the effect for at least 6 months without H2 treatment. However, this study of
H2 inhalation in AD patients had a small number of patients, and was an open label clinical
study. Further studies require a randomized, placebo-controlled group to clarify the effect
on a large number of patients. Despite these limitations, we propose that H2 inhalation
is a candidate for the disease-modifying treatment of AD, as the effects of H2 inhalation
is striking.

6. Patents

The authors are applicants of a patent that resulted from the work reported in
this article.
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